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Abstract

Psychologists have debated the form of the forgetting curve for over a century. We focus

on resolving three problems that have blocked a clear answer on this issue. First, we

analyzed data from a longitudinal experiment measuring cued recall and stem completion

from 1 minute to 28 days after study, with more observations per interval per participant

than in previous studies. Second, we analyzed the data using hierarchical models, avoiding

distortions due to averaging over participants. Third, we implemented the models in a

Bayesian framework, enabling our analysis to account for the ability of candidate

forgetting functions to imitate each other. An exponential function provided the best fit

to individual participant data collected under both explicit and implicit retrieval

instructions, but Bayesian model selection favored a power function. All analysis

supported above chance asymptotic retention, suggesting that, despite quite brief study,

storage of some memories was effectively permanent.
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The Form of the forgetting curve and the Fate of memories1

The search for a general quantitative description of the “forgetting curve”, the2

nonlinear function relating the observed probability of memory retention (R) and the3

delay or lag between study and test (t), is one of experimental psychology’s oldest4

problems (Ebbinghaus, 1885/1974). This problem has been raised for both short-term and5

long-term memory (Wickens, 1998); here we focus on the latter. Although the form of the6

forgetting curve is still seen as being of “central theoretical importance”(G. D. A. Brown,7

Neath, & Chater, 2007) over a century of research has failed to result in a consensus. The8

lack of consensus after so much effort has led some to question the utility of the entire9

enterprise of attempting to identify general laws for memory (Roediger, 2008).10

In this paper we attempt to determine the form of the forgetting curve using11

hierarchical models and Bayesian model selection (see Shiffrin, Lee, Wagenmakers, & Kim,12

2008 for a tutorial). These methods address two potential problems with previous13

analyses, distortions in group analyses based on retention data averaged over participants,14

and differences between candidate forgetting functions in complexity, which determines15

their ability to imitate each other in noisy data (Myung & Pitt, 1997). Lee (2004) found16

that complexity varied substantially among the set of five two-parameter retention17

functions identified by Rubin and Wenzel (1996) as providing the best fit1 to 21018

published forgetting curve data sets. Due to these differences, his Bayesian analysis, which19

penalized more flexible models as a function the level of measurement noise, found cases in20

which functions that gave a worse fit had a higher probability of being the true model21

than functions which gave a better fit. These results imply that inconstancy in results22

about the form of the forgetting curve might arise because of the combined effect of23

variations in the flexibility of the candidate functions and in the level of measurement24

noise between different studies.25

Averaging can be problematic for indentifying the form of the forgetting function26
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when participant curves vary in shape. That is, when participant curves are not related by27

a linear transformation. In such cases the shape of the average curve can be different from28

that of any individual curve, with the degree of departure depending on the amount of29

shape variation amongst participants (S. Brown & Heathcote, 2003b). Hence,30

inconsistency in findings about average forgetting curves may simply reflect incidental31

variations in the degree of individual differences in forgetting curve shape between studies.32

Although individual curve analysis avoids the averaging distortion, it can be plagued by33

high levels of measurement noise, which can also lead to inconsistent results and34

exaggerate confounding due to complexity differences. Indeed Cohen, Sandborn, and35

Shiffrin (2008) showed that in simulated experiments with few data points per individual,36

and hence high levels of measurement noise, the probability of selecting the37

data-generating forgetting function was better for group than individual analysis.38

Hierarchical models, which do not average data but have the advantages of group level39

analysis in terms of reduced measurement noise, offer a potential solution to this dilemma.40

The reduction in measurement noise as a result of the hierarchical structure is due to the41

pooling (shrinkage) of individual participant parameter estimates around a common mean.42

In the next section we introduce a general framework that identifies two components43

to the question about the form of the forgetting function. What mathematical function44

characterises the nonlinear change in retention with lag? Do forgetting curves have an45

asymptote (a) greater than chance performance (g)? We will refer to these respectively as46

the “function” and “fate” questions. We then attempt to answer both questions by47

analysing a cued recall data set collected by Averell and Heathcote (2009). In their48

experiment, participants studied 4-6 letter words and at test were cued with a stem49

consisting of the first three letters of a studied word. In one condition participants were50

given explicit memory instructions; they were asked to complete the stem to make a51

studied word. In a second condition a different group of participants were given implicit52
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memory instructions; they were asked to complete the stem with the first word that came53

to mind. Retention was measured at seven lags ranging from around one minute to one54

hour in the first experimental session, and again in sessions that occurred 1, 7 and 28 days55

after the initial session.56

The initial session was modelled after a similar experiment performed by McBride57

and Dosher (1997). They found constant retention for lags greater than 15 minutes, but58

suggested that a “further decline would be measured in hours or days” (p. 380). Averell59

and Heathcote (2009) included the last three sessions in order to test this possibility, and60

to provide data that strongly constrained the answer to the fate question. In order to61

reduce measurement noise, so the data also strongly constrains the answer to the function62

question, each participant responded to a large number of tests at each lag, around 80 in63

the first session and 104 in later sessions.64

Candidate forgetting curve forms65

Equation 1 is a general expression for the forgetting curve.66

R(t) = a+ (1− a)× b× P (t) (1)

P varies nonlinearly with t as a function of θ, a vector of positive parameters. We assume67

that, for all θ, P (0) = 1 and that P (t) approaches zero for large values of t. The68

parameters a and b are also assumed bounded between zero and one, and hence R(t) is69

similarly bounded, which must necessarily be the case as R(t) is a probability. Enforcing70

this bound is important as otherwise data fits can be inflated (see Navarro, Pitt, &71

Myung, 2004 for further discussion). Values of b less than one allow for the possibility72

that R(0) < 1, which might occur, for example, if study encoding fails 2
73

In terms of Equation 1, the function question is answered by identifying P (t) and74

the fate question is answered by determining if a > g. In cases where retention is measured75

by responses chosen from a very large set (e.g., cued recall of unrelated word pairs) it can76
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be assumed that g = 0. However, in Averell and Heathcote’s (2009) experiment each test77

stem could only be completed by a relatively small set of words (four or more), so chance78

performance had to be taken into account. An initial calibration study determined that79

g = .116 for their stimuli, so we estimated a parameter â that was bounded between zero80

and one and that was related to the asymptote by a = .116 + (1− .116)× á.81

Opinions are strongly divided on the question of the fate of memories. Chechile82

(2006) stated that “The inability of a function to account for the possibility of permanent83

retention is a serious failing” (p. 36). In contrast, Wixted (2004a) asserted that a chance84

asymptote “seems to be the view of almost everyone who has ever investigated the85

mathematical form of forgetting” (p. 871). Wixted demonstrated that the fate and86

function questions are intimately connected. For example, an exponential function87

provided a much worse fit than a power function when fit to free recall data reported by88

Wixted and Ebbesen (1991) when both had no asymptote, but fit equally well when both89

had an asymptote.90

We considered three candidate forms for the function P, an exponential function91

with parameter α, P = e−α where α represents the rate of forgetting. A Pareto function92

with parameters γ and β, P = (1 + γt)−β where γ scales the effect of β, the rate of93

forgetting (see below). Lastly, a special case of the Pareto, a power function, in which it is94

assumed that γ=1. The additive constant in the latter two functions ensures that95

P (0) = 1, and its value is fixed at unity without loss of generality when the b parameter is96

also estimated, as for any other value k, b(k + γt)−β = b́(1 + γ́t)−β , where b́ = bk−β and97

γ́ = γ/k. The same argument shows that the hyperbolic function examined by Rubin and98

Wenzel (1996), and favoured by Lee’s (2004) Bayesian analysis, 1/(mt+ b), is a special99

case of the Pareto where β = 1. Although this set of functions is not exhaustive, it does100

cover most of the best plausible candidates from previous studies3, and we contend that it101

also captures important characteristics of the psychological mechanisms thought to be102
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responsible for the form of the forgetting function.103

The relationship between our candidates, and their psychological interpretation, is104

illustrated comparing shapes as measured by their hazard function105

H(t) = (−dP (t)/dt)/P (t) (Chechile, 2006). For the exponential, the hazard function is a106

constant, H(t) = α, and for the Pareto it is a hyperbolically decreasing function of lag,107

H(t) = γβ/(1 + γt). The hazard function shows that, for the exponential, the rate at108

which memories are forgotten is a constant proportion of the remaining memories which109

can be forgotten. For the Pareto and power function, in contrast, something is slowing110

down the rate of forgetting relative to the exponential as lag increases. Wixted (2004a)111

attributed the slowing to consolidation, a process that makes memories less vulnerable to112

forgetting as they age. He related the candidate forgetting functions to Jost (1897) second113

law of memory, which states that if two memories have an equal strength at lag t,114

forgetting will be more rapid for a younger memory than an older memory thereafter.115

Both Pareto and power functions are consistent with Jost’s law, whereas the exponential116

function is not, as once their strengths are equal, both older and younger memories must117

be forgotten at the same rate if forgetting is exponential (Simmon, 1966).118

Pareto and power functions differ only in the scale on which consolidation occurs.119

For example, if γ = 0.1 in the Pareto function, the effect of an increase in t is ten times120

less than for a power function. Hence, for small values of γ consolidation is slow, whereas121

for large values of γ it is fast. Wixted’s (2004a) analysis demonstrates that weak122

consolidation might be mistaken for an asymptote, as it results in very gradual rate of123

decrease at longer lags. For example, in fits to Rubin, Hinton, and Wenzel’s (1999) data124

on cued recall of unrelated word pairs, he found that an exponential function provided an125

accurate fit with an asymptote of .11, whereas a Pareto function with an asymptote fixed126

at zero provided a slightly better fit with γ = 0.11.127

In light of such findings, and related findings favoring the zero-asymptote Pareto128
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with a range of estimated values, Wixted (2004a) contended that that the fate of129

memories that are not rehearsed after initial study, even memories that are initially very130

strong, such as in Bahrick’s (1987) study of high school knowledge of Spanish, are131

eventually completely forgotten. That is, although consolidation slows the rate of132

forgetting, it is ultimately ineffective. The implication is that forgetting functions should133

not include an asymptote parameter, but that they should allow for consolidation to occur134

on a range of different time scales. These implications are captured by the Pareto function135

with a zero asymptote.136

In light of these considerations, we fixed the asymptote of our candidate Pareto137

function at chance performance in our analysis. That is we assumed:138

R(t) = .116 + (1− .116)× b× (1 + γt)−β (2)

For the power and exponential functions, in contrast, we estimated the asymptote (taking139

into account chance performance as previously discussed), to allow, respectively, for140

ultimately effective consolidation and no consolidation. The inclusion of an asymptote141

parameter in the power function shows that while the power model is a special case of the142

Pareto it is not nested within it.143

R(t) = a+ (1− a)× b× (1 + t)−β (3)

144

R(t) = a+ (1− a)× be−αt (4)

Henceforth, we will refer to these candidate functions, each of which has three estimated145

parameters, simply as the Pareto, power and exponential functions. Comparison of all146

three bears on the function question, whereas comparison of the Pareto with the other two147

bears on the fate question 4
148
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Data Analysis149

Complete details of experimental methods are given in Averell and Heathcote150

(2009); here we provide an overview that highlights aspects that are important for151

answering the questions at hand. The 32 participants (half in the implicit and half in the152

explicit condition) performed thirty 4.3 minute study-test cycles in the first session, with153

an 8.6 minute break between the 16th and 17th cycles. Otherwise breaks between study154

and test, and between study-test cycles, were only 7 second to ensure that participants155

had little time for rehearsal of the study words. Study consisted of 17 word pairs being156

presented for 4 seconds each, with participants required to rate which word occurred more157

frequently in their linguistic experience. At test 26 stems were presented sequentially for 7158

seconds each, and during each presentation participants were required to type a159

completion. In later sessions, which were performed in the same room, the same procedure160

applied, except that five study-test cycles were performed with no long break, and only 13161

pairs were studied on each cycle. The first cycle in later sessions was a warm up, whereas162

in the remaining cycles test stems corresponding to words studied in the first session. For163

each participant no study word or test stem was ever repeated in the entire experiment.164

Several aspects of the experimental methods bear on two important and related165

issues, retrieval failure and interference. Retrieval failure occurs when an available166

memory (i.e., one that is still in storage) is not accessible at the time of testing. Such167

failures can occur when memory is probed with retrieval cues that are not strongly168

associated to the target memory, or due to interference occurring when other memories169

out-compete with the target memory for retrieval. If the level of retrieval failure differs170

across lags any answer to the function question would be confounded, as the shape of the171

forgetting curve would be altered by the differences. Strong retrieval failure at long lags172

would also confound the answer to the fate question, as available memories might not173

result in above chance performance.174
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Averell and Heathcote (2009) used stem-cued testing with the aim of minimizing175

both effects. Only one word consistent with each test stem was studied, which should176

minimize interference due to retrieval competition effects, because no allowable non-target177

test response was ever studied. Stems provide strong retrieval cues, so particularly in later178

experimental sessions, when cues related to the study context are less likely to be used,179

stored memory traces are more likely to still be accessible. To further reduce the180

possibility of retrieval failure in later sessions, each participant videoed a first-person view181

of their walk into the experimental room from the foyer where they were met by the182

experimenter. The experimenter also made a short video of the participant sitting in front183

of the experimental computer in order to capture aspects of the study context that might184

not be present in later sessions (e.g., the participant’s attire). Prior to the experiment185

participants also answered questions about the weather, their surrounds and mood as well186

as their activities just prior to commencement of the first session. The answers to these187

questions and the videos were reviewed just prior to the commencement of later testing188

sessions.189

Three further measures were taken to also reduce confounding by factors that190

differed between lags. The number of stems in a test cycle that corresponded to words191

studied in the same test cycle was approximately equated over all ten lags. This control192

aimed to equate the degree to which recall of one item could assist recall of following test193

items from nearby study positions (Howard & Kahana, 2002). Testing of items in the194

shortest (1.2 minute) lag condition occurred around one quarter of the way through the195

test cycle following the cycle in which they were studied. The intervening test trials made196

it unlikely that rehearsal for this lag would advantage performance relative to longer lags.197

The remaining lags occurred three quarters of the way through the test list and 1, 2, 4, 8198

or 16 cycles later, on average lags of 2.93, 6.45, 10.75, 19.35, 36.55 and 70.95 minutes. The199

lags for the following three sessions were, on average, 1,440, 10,080 and 40,320 minutes200
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after study. An increasing spacing was used in order to provide the densest measurements201

of the forgetting curve in the region where it was most rapidly changing (Myung & Pitt,202

2009).203

Finally, the seven lags in the first session were dispersed over the first 2.1hour204

experimental session so that their average midpoints were close to equivalent (69.8, 70.4,205

70.2, 70.4, 70.2, 70.1 and 70.1 minutes into the session). This equivalence minimized the206

possibility that that the lag effect within the first session was confounded by fatigue or207

differential interference effects related to the position of the lag in the test session,208

whether specific to a test item or non-specific. However, it is important to note that this209

final control does not apply to the three longest lags. For example, the later testing210

sessions took only 35 minutes, and so performance may have been improved by a211

reduction in fatigue. On the other hand performance in the later sessions may have been212

reduced by a build up of retroactive interference after the first session or because, despite213

the measures taken, the reinstatement of study context in later sessions was not equivalent214

to the first session. In light of these possibilities, after reporting results for the analysis of215

all lags, we discuss parallel results obtained based on only the lags in the first session.216

Maximum Likelihood Analysis217

Individual and group analyses characterize each individual’s data, or the group218

average, by estimating a set of retention function parameters. Retention data, in the form219

of counts for correct responses at each lag (ni for i = 1 . . . T lags) is usually modelled by a220

binomial distribution, n ∼ B(pi, Ni) where the Ni are the number of responses at each lag221

and the pi are the probabilities of a correct response at each lag. The binomial probability222

parameters, in turn, are assumed to come from a retention function, such as Equations 2-4223

with parameter vectors of the form Θ(a, b, θ). Estimation of this type can be done by the224

method of maximum likelihood, using an optimization algorithm to find an estimate, Θ̂,225
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that minimizes the deviance, which equals -2 times the log-likelihood. The minimum226

deviance, D, is obtained by plugging Θ̂ into its retention function to obtain retention227

probability estimates, p̂ which are in turn substituted into the following equation:228

D = −2arg max
t

∑

i=1

ni ln pi + (Ni − ni) ln(1− pi) (5)

A summary of the group results can be made by summing of the individual deviances, as229

each deviance, and so their sum, have a χ2 distribution. When we performed this analysis230

the exponential function clearly had the best fit with total deviance values of (959 and231

874) for the explicit and implicit data respectively, with the power function being232

intermediate (1032 and 902) and the Pareto function providing the worst fit (1070 and233

921).234

At the individual participant level 11 of the 16 participants in the explicit235

instruction condition had a lower deviance for the exponential compared to the power and236

14 of the 16 participants had lower deviance for the exponential when compared to the237

Pareto. In the implicit instruction condition 12 of the 16 participants have lower238

exponential deviance relative to the power model while 13 of the participants had lower239

deviance for the exponential relative to the Pareto.240

The main shortfall of using minimum deviance as a tool for model selection is that241

it does not account for uncertainty about parameter estimates and differences in242

functional form complexity. The functional form of a model dictates the way in which243

parameters can interact. Different algebraic relationships between parameters in different244

models can lead to a differential ability of models with the same number of nominal245

parameters to fit noisy data patterns. What is needed is a way to penalize more complex246

models for the ability to fit random data patterns.247
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Hierarchical Bayesian Estimation248

A hierarchical model adds the assumption that each participant, characterised by249

their parameter vector Θi for i = 1 . . . P participants, is a sample from a population250

distribution. In our application we assumed a multivariate normal population251

distribution, with parameters consisting of a vector of means, µ and a variance-covariance252

matrix Σ. The three means estimate the central tendency of the population. The Σ253

matrix consists of the three variances on the main diagonal, which estimates the extent of254

individual differences, and the three co-variances, which estimate the population255

correlations amongst parameters. We allowed for such correlations because it might be the256

case that, for example, participants with a generally better memory have both good initial257

encoding (b) and a slower rate of forgetting (α or β ). In order to conform to the258

unbounded range of the normal, we estimated the probit transform of the a, á and b259

parameters and the logarithm of the positive parameters (α ,β and γ). The hierarchical260

models introduce another sort of functional form complexity related to the amount of261

shrinkage associated with a particular forgetting function. Greater shrinkage results in a262

less complex, and hence less flexible, model. This second type of functional form263

complexity must also be accounted for in model selection.264

Although hierarchical models can be estimated by maximum likelihood (see Farrell265

& Ludwig, 2008) determining the likelihood of each data point requires an integration266

that can be difficult to perform in practice. Bayesian estimation using Markov Chain267

Monte Carlo (MCMC) methods provides an easy-to-implement alternative given the268

availability of general MCMC packages such as WinBUGS (Lunn, Thomas, Best, &269

Spiegelhalter, 2000), which we used here. Informally, MCMC methods can be thought of270

as producing a set of population parameter samples, corresponding participant parameter271

and posterior predictive data samples (see Andrieu, DeFreitas, Douchet, & Jordan, 2003272

for a comprehensive history and overview of MCMC methods).273
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Bayesian estimation requires a further set of assumptions, about prior distributions,274

which specify knowledge of model parameter values before the data are observed. For275

example, if nothing is known about a parameter except that it is on the unit interval,276

assuming a uniform prior is reasonable. For the results we report in detail later, we277

assumed a uniform prior for the population means of our a (for the exponential and278

power) and b parameters, which corresponds to a standard normal prior on the probit279

scale. For the population means of the remaining parameters (i.e., the logarithms of α, β,280

and γ) we assumed a normal prior with a mean of zero and standard deviation of 5. This281

prior is diffuse, in the sense of having appreciable mass over a broad range of parameter282

values, and has a median of one on the original scale for these parameters, which is close283

to typical estimated values. Finally, we made the convenient assumption of an inverse284

Wishart prior, W−1(m,ψ) for Σ (Tanner, 1998). For our 3x3 Σ matrix the inverse Wishart285

prior has parameters m > 2 and ψ, positive definite inverse scale matrix. We used the286

least informative value of m=3 and set ψ to the identity matrix. Figure 1 summarizes the287

Bayesian hierarchical model graphically (see Lee, 2008, for an introduction and examples288

of this notation) for the case of the exponential model. Note that hierarchical modelling289

does not require specification of covariance hyper-parameters. Potential correlations290

between parameters can be investigated by examining correlations between posterior291

parameter in a model assuming independence. When we did this we found sufficient292

correlation to warrant including explicit covariance parameters in our models. This has293

the advantage of providing improved estimates of parameter correlations as well as294

improving MCMC sampling efficiency. Essentially the same approach is used, for the same295

reasons, by Morey (in press) in studying different aspects of human memory.296

The aim of MCMC estimation is to produce a sequence of samples from the joint297

posterior distribution of the parameters 5, where the posterior density of a parameter298

vector is proportional to its prior density times its likelihood given the data. Measures of299
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the central tendency of the posterior samples, such as the mean, provide an estimate of300

the population parameters. Variation among the samples reflects uncertainty about each301

parameter’s true value. Hence, the quantiles of the posterior distribution can be used to302

construct parameter interval estimates, which are called “credible intervals” in Bayesian303

estimation. For example, the 2.5 % and 97.5 % quantiles define the end points of the 95 %304

credible interval.305

We estimated the Bayesian hierarchical models described above separately for the306

explicit and implicit data sets from all lags. The lines in figures 2, 3 and 4 plot the307

posterior prediction of the model based on the expected posterior value of parameters in308

each of the models. Each panel in the figures also plots the same set of point and 95 %309

credible interval estimates of population retention probabilities. These estimates were310

calculated using Bayesian hierarchical models which did not assume a forgetting function;311

rather, they assumed a 10× 10 multivariate normal population distribution (with an312

arbitrary variance-covariance matrix) of probit scaled retention. The multivariate normal313

transformation is the Bayesian equivalent plotting maximum likelihood estimates of group314

performance at each lag as is common in studies of retention. The technique yielded315

parameter vectors of population mean retention probability estimates. These estimates316

were averaged, and their 2.5 % and 97.5 % quantiles calculated, and both appropriately317

transformed to obtain the points and intervals in Figures 2, 3 and 4. Note that the318

ordinates in Figures 2, 3 and 4 have a log10(lag) scale so that results for each lag can be319

easily distinguished.320

The point estimates in figures 2, 3 and 4 indicate that retention in the explicit and321

implicit conditions differed only for shorter lags. The difference decreased with lag and322

was negligible after the first session. For both conditions retention decreased slightly from323

the end of session through to session three, but was essentially identical for lags of 7 and324

28 days. Averell and Heathcote (2009) used interval estimates to argue that even at 28325
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days performance was well above chance. In their logit scaled analysis, and in the probit326

scale analysis reported here the proportion of samples falling below the chance completion327

rate was 0.0013 or less in all cases.328

Figures 2, 3 and 4 show that Averell and Heathcote’s (2009) design and results329

fulfil recommendations made by Rubin et al. (1999) for distinguishing amongst forgetting330

functions; that there be nine or more lags with a large ratio of longest to shortest lag, and331

that data points are away from ceiling and floor, with interval estimates that are precise,332

with a large ratio of most to least remembered. They recommended that functions that do333

not remain within the interval estimates be rejected. The power function comes closest to334

fulfilling this criterion, falling outside the 95 % credible intervals for both conditions only335

at the third lag. However, this method of model selection, even using the Bayesian336

intervals, does not take account of differences in model complexity. In the next section we337

apply model selection techniques that do make adjustments for complexity, although to338

varying degrees. We report results for several approaches following Liu and Aitkin (2008)339

suggestion that this provides another form of sensitivity check.340

Bayesian Model Selection341

Posterior deviance values for each MCMC sample j = 1 . . .M can be used as a basis342

for model selection (see Shiffrin et al., 2008 for discussion of alternative approaches). Each343

value is obtained by plugging each MCMC forgetting function parameter estimates for344

each participant, Θij into their forgetting function and substituting the resulting retention345

probability estimates into the binomial deviance equation (5). These deviance values are346

summed over participants to produce the set of posterior deviance values, D(Θj)347

Two of our model selection methods (Raftery, Newton, Sagagopan, & Krivitski,348

2007) AICM and BICM, require the deviance values to be independent. To achieve349

independence, we thinned our MCMC chains, retaining only one in every K values. Note350
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that the results reported previously were also based on these thinned chains. The value of351

K required, which varied between models, was indicated by examining autocorrelation352

functions and using the “effetiveSize” function provided by Plummer, Best, Cowles, and353

Vines’s (2009) “coda” package for the R statistical language. The latter function354

determines the effective MCMC sample size adjusted for autocorrelation; we chose a value355

of K such that the thinned chain had an actual and effective size of 10,000. We found that356

this number of independent deviance values, was sufficient to reduce the BICM357

Monte-Carlo standard-error estimate provided by Raftery et al. (2007) to a level that did358

not introduce any ambiguity into the model selection results.359

We examined three model selection “information criteria” calculated from Monte360

Carlo posterior deviance values. As well as the Monte Carlo Akakie (AICM) and Bayesian361

(BICM) information criteria mentioned previously, we also examined the more commonly362

used Deviance Information Criterion (DIC) (Spiegelhalter, Best, Carlin, & Linde, 2002)363

Each of these criteria is based on the mean of the set of posterior deviance values, D(Θi)364

and an estimate of the effective number of parameters in the hierarchical model.365

Differences in model complexity can cause estimates of the effective number of parameters366

to vary from the nominal number of parameters, which equals 48 for each of our367

three-parameter forgetting functions (i.e., 3 × 16, as 16 participant’s data contributes to368

each hierarchical model).369

For DIC, the estimate of the effective number of parameters is pD = D(Θi −D(Θi),370

where the latter term is a deviance calculated based on the average parameter values, Θi.371

The pD measure is sensitive to the constraint or shrinkage imposed by the hierarchical372

structure in the model (Gelman et al. 2004). If there is little constraint pD divided by the373

number of participates will approximate the nominal number of forgetting function374

parameters. However, when there is constraint, the estimate of ‘effective parameters’ can375

differ from the nominal value. A major concern in hierarchical model selection is that the376
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hyper-distributions and their priors may impose different degrees of shrinkage for different377

models. Estimates of the hyper-distribution standard deviations and correlations can be378

used to examine the degree of shrinkage. It is also important to note that pD D(Θi) and379

hence pD is not parametrization invariant. In our application, for example, the value of380

D(Θi) differs depending on whether the average of Θ is taken on the probit and381

logarithmic scales used for estimation or on their original scales. The results we report382

here used the former scale however the model selection resultss do not differ if the later383

scale is used.384

For the other criteria the estimate of the effective number of parameters is385

pV = Var(D(Θi))/2. As the variance of the posterior deviance is parameterization386

invariant, so is pV . More complex models have a posterior deviance distribution that is387

more variable. While the complexity penalty pV is sensitive to the constraint imposed by388

the hierarchical structure Raftery et al. (2007) suggest that BICM is an asymptotic389

approximation of a Bayes factor so pV is also sensitive to differences in the functional form390

complexity resulting from differences in the way parameters interact within a forgetting391

function. Note that for both estimates the effective number of parameters is not an392

absolute property of a model, it also depends on the data and the design from which they393

come (e.g., the lag values measured). Table 2 provides the estimates of the effective394

number of parameters per participant (i.e., pD/16 and pV /16) as well as the overall D(Θi)395

values for each model in the explicit and implicit conditions based on all lags.396

Both measures of the effective number of parameters indicate that the Pareto model397

is least complex and the exponential model most complex, with the power model398

intermediate. As variance is always positive, the pV estimates are always positive, but this399

is not the case for the pD estimate, which, as shown in Table 2, are negative for all400

models in the implicit condition. The negative pD values for the implicit condition are401

problematic. Spiegelhalter et al. (2002) suggest that negative pD values can be produced402
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from non-normal posterior distributions or when the model is not a good description of403

the data. We investigated these possibilities in our data and found neither were applicable.404

Further, estimates remained negative when using central tendency estimates (e.g., median405

or mode) other than the mean as well as averaging on different scales in the calculation of406

pD and the same models were selected. Due to the negative pD values we recommend407

caution when interpreting the DIC results for the implicit instruction condition.408

Regardless ofthe negative pD values, model selection based on the three information409

criteria produced consistent results favoring the power function, as shown in Table 3.410

Each criterion adds to the mean posterior deviance a correction that is an increasing411

function of model complexity, so the model with the smallest value of the criterion is412

selected, DIC = D(Θi) + pD, AICM = D(Θi) + pV and BICM = D(Θi) + pV × ln
∑

iNi.413

BICM applies a harshest complexity correction for all but very small data samples, and414

has been criticised for over correction (see Carlin and Spiegelhalter’s discussion in Raftery415

et al., 2007 pp.33-36). The AICM and BICM results for a set of models can be416

transformed into weights making their values more interpretable as the conditional417

probability of each model (Wagenmakers & Farrell, 2004). These values are given in418

brackets in Table 3. In all cases the exponential model has negligible support. The AICM419

weights indicate very strong evidence in favor of the power model, whereas the BICM420

weights are more equivocal, but still clearly favor the power model.421

By inspecting the hyper-distribution standard deviations we can gain an422

understanding of how much pooling is occurring across models. Larger standard deviation423

in the hyper-distributions equates to less constraint by the imposed hierarchical structure.424

Table 4 shows the hyper-distribution standard deviation for each model in both the425

explicit and implicit instruction conditions. The Pareto has a smaller standard deviation426

for the b parameter and overall lower standard deviation estimates in the explicit427

instruction condition, equating to lower pD values. However, the lower complexity penalty428
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is not enough to make up for its misfit as reflected in its generally higher posterior429

deviance. The exponential and power models are roughly equivalent in the standard430

deviation of the hyper-parameter for the asymptote and scale parameters the rate431

parameter (α) standard deviation estimates in the rate parameter for the exponential is432

slightly larger than the rate parameter (β) estimates for the power. Therefore the lower433

DIC for the power model may be the result of differential shrinkage across models.434

To further examine the possibility of differential shrinkage effecting the DIC results435

as well as to investigate the possibility of prior sensitivity in model selection (see Liu &436

Aitkin, 2008) we examined the effect of a range of priors; repeating our analyses with437

prior standard deviations of 2 and 1, respectively, for the probit and logarithmic scale438

population mean as well as a very diffuse set of priors where probit scale parameters were439

given a standard deviation of 2 while the logarithmic scaled parameters had a standard440

deviation of 5 6. We also analysed model selection with a range of values for ψ, the inverse441

Wishart hyper-prior. With all sets of hyper-priors the posterior variances did not change442

from the results in table 3 and again the power model was favoured by all model selection443

techniques in both experimental conditions. The outcomes suggest that the results444

reported in Tables 1 to 3 show little prior sensitivity. This includes the pD values for the445

implicit condition, which remained negative for all sets of hyper-priors.446

Although the model selection techniques above all point to the power model447

supremacy at the hierarchical level it is also worth investigating model predictions against448

actual performance at an individual level. Posterior predictive distributions are useful in449

such a comparison and are generated based on equation 6.450

p(yrep|y) =

∫

p(yrep|θ)p(θ|y)d(θ) (6)

Where yrep can be thought of as values (in this case counts of correct completions at each451

lag) that would be observed if the conditions generating y were reintroduced. The integral452
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gives the probability density of yrep given the values of θ as well as the posterior453

distribution of θ given the data y across parameter space d(θ) (see Lynch & Western, 2004454

for further discussion). WinBUGS (Lunn et al., 2000) can compute posterior predictive455

distributions with the use of the cut function. We can compare these posterior predictive456

distributions to actual performance to asses model performance. Indication of a models457

inadequacies are seen where the posterior predictive distributions fail to capture trends in458

individual performance.459

Figures 5 and 6 rrepresent the posterior predictive distributions at each lag as460

vertically aligned squares where the size of each of the squares represents the probability461

of each retention count. Observed performance is indicated by the black line (see Shiffrin462

et al., 2008 The results for participant 9 in the explicit condition and participant 15 in the463

implicit condition, shown in figures 5 and 6 respectively, are representative of results for464

other participants. In both figures it is evident that, relative to the power model, the465

exponential under-predicts performance at the later lags in session 1 (lags 6 and 7) and466

over-predicts performance at the later sessions (lags 8-10). The Pareto exhibits the467

opposite pattern, over-prediction at lags 6 and 7 in the first session and under-prediction468

for later sessions. The same trends are evident in the population level results illustrated in469

figures 2, 3 and 4.470

General Discussion471

The search for a general description of forgetting is one of the oldest unresolved472

problems in experimental psychology. We proposed that the difficulty in resolving this473

problem stems from issues relating to: 1) the level of measurement noise and the length of474

the retention period, 2) fitting models to data averaged over participants and 3) model475

selection techniques that do not account for differential complexity between candidate476

forms of the forgetting curve.477
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We addressed the first problem by analyzing data collected by Averell and478

Heathcote (2009), with a large number of observations per participant per retention479

interval, and retention measurements from one minute to 28 days. We avoided the second480

problem, while also minimizing measurement noise by analyzing data from all participants481

simultaneously, using hierarchal models estimated by Bayesian methods. Importantly the482

hierarchal models offer the level of psychological abstraction necessary to infer processes483

within the population without suffering the disadvantages distortion due to averaging. We484

addressed the third problem using Bayesian model selection techniques. These techniques485

required only information easily available from standard MCMC estimation, posterior486

deviance values. Consequently, both the estimation of hierarchical models and Bayesian487

model selection were accomplished relatively easily, making this approach readily available488

to other researchers.489

Our analysis revealed that, although for individual participant data the exponential490

function with an above chance asymptote had the best fit among the models we491

considered, this advantage was due to its extra flexibility (complexity). When we adjusted492

for complexity using a range of model selection techniques that varied in the degree to493

which they adjusted for complexity, in every case a power function with an above chance494

asymptote provided the best description of forgetting. Interestingly, previous analyses of495

retention functions without an asymptote (Lee, 2004) found that the power model was496

more complex than the exponential. Our findings suggest that the addition of asymptote497

parameters adds more complexity to the exponential function than the power function.498

The Power model of Forgetting499

The power function was selected as the best forgetting curve for data collected500

under both explicit and implicit memory instructions. Table 5 shows the estimated501

estimated posterior parameter values and 95% credible interval for the power function.502
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The a and γ estimates are very similar, but the b parameter is slightly greater under for503

explicit than implicit, suggesting that instructions produced differences in initial504

performance, but that the rate at which participant’s performance declined and the final505

level of retention were almost identical. The lower bound of the credible interval for the a506

parameter in both conditions is above the chance completion level of .116 indicating that507

the asymptote parameter was necessary. The correlation estimates in table 4 show mild508

departures from independence. The forgetting functions with an asymptote displayed a509

small positive correlation between the a and b parameters. This suggests that participants510

with a higher asymptote also have a greater estimated level of initial retention (i.e.,511

a+ (1− a)× b), perhaps due to individual differences in overall mnemonic ability. The512

correlations between the forgetting rate and asymptote was weak for both exponential and513

power functions, but there were larger positive correlations between b and the forgetting514

rate, and this was also true for the Pareto function. The latter correlations suggest that515

participants with a greater overall decrease in retention relative to their asymptotic516

performance forgot at a faster rate. Similarly larger, but negative, correlations occurred517

between the Pareto forgetting rate and γ parameters. This suggests that, particularly in518

the implicit condition, there was a trade-off between these parameters, whereas the Pareto519

b and γ parameters were largely independent.520

The similarity in the predicted posterior parameter estimates for the explicit and521

implicit instruction conditions resemble those of McBride and Dosher (1997) (see also522

Dorfam, Kihlstrom, Cork, & Misiaszek, 1995), which they took to be suggestive of a single523

system underlying performance on both tasks. Kinder and Shanks (2001) provide a524

cognitive single system model of other phenomena used as evidence for separate explicit525

and implicit memory systems (but see Reber, 2002), and Wais, Wixted, Hopkins, and526

Squire (2006) suggest that the same hippocampual circuits underlie performance in both527

explicit and implicit memory tasks. Better initial performance under explicit instructions528
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may be due to a conscious effort to reinstate retrieval cues that are available within the529

first session but subsequently become unavailable. Consistent with this characterization,530

implicit and explicit performance was essentially identical in later sessions.531

The ability of the power function to describe theoretical postulates believed common532

to forgetting, as well as a broad array of other cognitive processes, such as the relationship533

between perceptual magnitude and the judgment of that magnitude (Stevens, 1957), and534

the need to retrieve information in ecological settings (Anderson, 1990; Schooler, 1998) led535

G. D. A. Brown et al. (2007) to suggest that the power function be treated as a default536

model for cognitive processes until such time that sufficient evidence against it is found.537

The power law of forgetting has been used to describe forgetting at a neural level, where538

interference from other memory traces causes a breakdown in consolidation processes539

(Wixted, 2004a), but with a diminishing effect as retention increases, consistent with the540

power function’s declining hazard rate (see Simmon, 1966). Although the findings541

presented above are consistent with such a consolidation processes, they are not in542

agreement with the Wixted’s (2004a) conclusions regarding the ultimate fate of memories.543

Hence, if competition for consolidation is the cause of forgetting, it appears that544

ultimately some memory traces ‘win’ the competition and are permanently stored.545

A power law of forgetting has also been attributed to a purely cue overload process546

(G. D. A. Brown et al., 2007). Specifically, a power model of forgetting can capture the547

buildup of interference where interfering material is assumed to be logarithmically548

compressed within cognitive space as a function of retention interval. Logarithmic549

compression of items in memory has the effect of making them increasingly confusable as550

time proceeds. The logarithmic compression of information is one of the assumptions of551

the SIMPLE (Scale Invariance Memory Perception and Learning model; G. D. A. Brown et552

al., 2007). However, the cue overload argument presented by G. D. A. Brown et al. (2007)553

also assumes a process that ultimately renders memories inaccessible due to the buildup of554
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interference, an assumption that is not in keeping with the results reported here. It should555

be noted that the two explanations need not be mutually exclusive, indeed Wixted556

(2004a) argued that the two causes of forgetting both occur in normal human functioning.557

Within Session Effects558

The power function was selected based data from retention periods extending across559

several experimental sessions over a 28 day period. However, many retention experiments560

are conducted within a single session. When we analyzed data from only the first session561

of Averell & Heathcote, 2009, results in favor of the power function were less convincing,562

and, overall, results were less consistent. Model selection results based on posterior563

likelihood ratios were equivocal in all cases. The exponential function was preferred by564

both AICM and DIC for the explicit data, and by DIC for the implicit data. The power565

function was preferred by AICM and BICM for the implicit data, and the Pareto function566

was preferred by BICM for the explicit data. Clearly, the latter result is questionable in567

light of all selection methods placing the Pareto function last with the full data set, as568

including longer lags should favor the Pareto function by measuring the very slowly569

declining performance which it can model. Hence this result is likely due to an570

over-correction for complexity by BICM (Spiegelhalter et al., 2002). On balance, however,571

the other findings indicate that the exponential function provides the best account of the572

session one data.573

One possible account of these differences between first session model selection574

results and the results for all sessions is that, consistent with the multiple-scale nature of575

the power function, two processes with different time scales are acting to disrupt memory576

performance over the full 28 day period. The fast time scale process dominates forgetting577

within the first session, resulting in approximately exponential forgetting (also see Rubin578

et al., 1999, for evidence of an even faster time scale process that they identify with579
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short-term memory). Across later sessions the longer time scale process dominates, and so580

when data from all sessions are fit simultaneously the multi-scale power function provides a581

better account. Therefore, a power law of retention might not be an absolute, but instead582

depend on the length of the retention interval. However, as most attempts to retrieve583

information in the real world happen outside of the context in which the information was584

encoded, and often over time-frames of days, weeks and even years, a power function may585

represent the most ecologically valid quantitative description of forgetting.586

Above chance asymptotes and Josts second law587

The power law of forgetting quantifies one of the oldest verbal ‘laws’ in experimental588

psychology, Jost (1897) second law. Our results partially support Jost’s second law. Our589

findings suggest that if two memory traces are equal in strength, but sufficiently different590

in age, the younger one will decline faster than the older one, due to the influence of the591

fast time-scale process on the younger but not older trace. However, this law only holds592

until both traces have reached asymptote. Obviously, at this stage, the age of the trace is593

irrelevant as both traces are now no longer declining. The presence of an above chance594

asymptote for the power model suggests that some memory traces are resistant to the595

force imposed by other memories either at the neural or cognitive level. Given that 28596

days is a sufficient period to address the concerns expressed by McBride & Dosher, 1997,597

as well as other similar concerns (e.g. Rubin et al., 1999) about declines too small to598

detect within a single session, our results agree with Chechile’s (2006) suggestion that not599

allowing for the possibility of permanent retention constitutes a “serious failing” (p.36).600

Results in favor of an above chance asymptote are particularly bolstered by consistent601

selection of the Pareto of the worst model of forgetting over 28 days, given the parametric602

flexibility of this function to model very slow declines.603

There are both cognitive and neural mechanisms that could support the permanent604
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storage of memory traces. From a neurological perspective Arshavsky (2006)suggests that605

memory traces that survive long enough become stored as structural changes in DNA and606

are therefore permanent. Interestingly, Arshavsky (2006) believes that the process by607

which changes in long term potentiation are transferred into changes in DNA happens608

over the first few weeks after encoding. Therefore, the above chance asymptotic609

performance seen here could be the result of structural changes in DNA. The DNA610

hypothesis is attractive because it offers a solution to the problem of capacity. Alternative611

neural hypothesis regarding memory formation, such as structural changes at the synapse612

of neurons, have a limited capacity in terms of the overall number of memories that can be613

stored. However, structural changes in DNA would allow for an almost limitless number of614

memories to be permanently stored.615

From a cognitive perspective our results suggest that some memories remain free616

from the detrimental affects of interference (i.e., they stand out from the noise resulting617

from the logarithmic compression of memory traces), and it is this distinctiveness that is618

driving the above chance asymptotic performance seen in the results. Retrieval cues619

provided by the environment at test may provide a mechanism that reduces the620

interference. The experiment examined here offered both item cue support (the first three621

letters of the critical word) and environmental cue support (video tape and questionnaire).622

If forgetting is driven largely by interference with retrieval by previous and intervening623

material, than the retrieval cue support given in this experiment may have alleviated the624

effects of interference, thereby allowing more of the stored information to be translated625

into performance. Accordingly, the asymptote may correspond to the amount of retrieval626

support given and, as suggested by Rubin et al. (1999), the asymptote parameter may be627

useful in analysis of retention data until the experimental context at test is totally628

different from the experimental context at study.629



Forgetting form and fate 29

Author Note

Address correspondence to Lee Averell: Aviation Building, University Avenue,

Callaghan University of Newcastle Fax: (61-2) 49216906 NSW, 2308, AUSTRALIA Office:

(61-2)49216959 lee.averell@newcastle.edu.au



Forgetting form and fate 30

References

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, N.J.: Lawrence

Erlbaum associates.

Andrieu, C., DeFreitas, N., Douchet, A., & Jordan, M. I. (2003). An introduction to

mcmc for machine learning. Machine Learning , 50 , 5-43.

Arshavsky, Y. I. (2006). “the seven sins” of the hebbian synapse: Can the hypothesis of

synaptic plasticity explain long-term memory consolidation? Progress in

Neurobiology , 80 , 99-113.

Averell, L., & Heathcote, A. (2009). Long term implicit and explicit memory for briefly

studied words. In A. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st annual

confrence of the cognitive science society (p. 267-281). Austin TX: Cognitive Science

society.

Bahrick, P., H. (1987). Semantic memory content in permastore: Fifty years of memory

for spanish learned in school. Journal of experimental psychology; General , 113 ,

1-26.

Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory.

Psychological Review , 114 , 539-576.

Brown, S., & Heathcote, A. (2003b). Averaging learning curves across and within

participants. Behavior research Methods, Insturuments and Computers, 35 , 11-21.

Chechile, R. A. (2006). Memory hazard functions: A vechile for theory development and

test. Psychological Review , 113 , 31-56.

Cohen, A., Sandborn, A., & Shiffrin, R. (2008). Model evaluation using grouped or

individual data. Psychonomic Bulletin and Review , 15 , 692-712.

Dorfam, J., Kihlstrom, J. F., Cork, R. C., & Misiaszek. (1995). Priming and recognition

in ect induced amnisia. Psychonomic Bulletin and Review , 2 , 224-248.

Ebbinghaus, H. (1885/1974). Memory: A contribution to experimental psychology. New



Forgetting form and fate 31

York: Dover.

Farrell, S., & Ludwig, C. H. (2008). Bayesian and maximum likelihooh estimation of

hierarchical response time models. Psychonomic Bulletin and Review , 15 ,

1209-1217.

Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal

context. Journal of Mathematical Psychology , 46 , 269-299.

Jost, A. (1897). Die assoziationsfestgkeit in iher abhangigkeit von der verteilung der

wiederholungen [the strength of association in their dependence on the distribution

of representations]. Zeitschrift fur Psychologie und Physiologie der Sinnesorgane,

16 , 436-472.

Kinder, A., & Shanks, D. R. (2001). Amnesia and the declarative/non-declarative

distinction: A recurrent network model of classification, recognition and repetition

priming. Journal of cognitive neuroscience, 13 , 95-105.

Lee, M. D. (2004). A bayesian analysis of retention function. Lournal of mathematical

psychology , 48 , 310-321.

Lee, M. D. (2008). Three case studies in the bayesian analysis of cognitive models.

Psychonomic Bulletin and Review , 15 , 1-15.

Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model

generalisabilty. Journal of Mathematical psychology , 52 , 362-375.

Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). Winbugs a bayesian

modelling framework: concepts, structure and extensibility. statistics and

Computing , 10 , 325-337.

Lynch, S., & Western, B. (2004). Bayesian posterior predictive checks for complex models.

Sociological Methods and Resrarch, 32 , 301-335.

McBride, D. M., & Dosher, B. A. (1997). A comparison of forgetting in an implicit and

explicit memory task. Journal of experimental psychology: General , 126 , 371-392.



Forgetting form and fate 32

Morey, R. (in press). A baysesian hierarchical model for the meausurement of working

memory capacity. Journal of Mathematical Psychology .

Myung, I. J., & Pitt, M. A. (1997). Applying occam’s razor in modeling cognition: A

bayesian approch. Psychonomic Bulletin and Review , 4 , 79-95.

Myung, I. J., & Pitt, M. A. (2009). Optimal experimental design for model

discrimination. Psychogical Review , 116 , 499-518.

Navarro, D. J., Pitt, M. A., & Myung, I. J. (2004). Assesing the distinguishability of

models and the informativeness of data. Cognitive Psychology , 49 , 47-84.

Plummer, M., Best, N., Cowles, K., & Vines, K. (2009). Output analysis and diagnostic

for mcmc (Tech. Rep.). CRAN.

Raftery, A. E., Newton, M. A., Sagagopan, J. M., & Krivitski, P. N. (2007). Estimating

the integrated likelihood via posterior simulation using the harmonic mean identity.

Bayesian Statistics, 8 , 1-45.

Reber, P. J. (2002). Attempting to model dissociations in memort. Trends in cognitive

neuroscience, 6 , 192-194.

Roediger, H. L. (2008). Relativity of remembering: Why the laws of memory vanished.

Annual review of psychology , 59 , 225-254.

Rubin, D. C., Hinton, S., & Wenzel, A. E. (1999). The precise time course of forgetting.

Journal of experimental psychology , 25 , 1161-1176.

Rubin, D. C., & Wenzel, A. E. (1996). One hundred years of forgetting: A quantitative

description of retention. Psychological Review , 203 , 734-760.

Schooler, L. (1998). Sorting out core memory processes. In N. Chater & M. Oaksford

(Eds.), Rational model of cognition (p. 128-155). Oxford: Oxford University Press.

Shiffrin, R. M., Lee, M. D., Wagenmakers, E.-J., & Kim, W. J. (2008). A survey of model

evaluation approches with a tutorial on hierarchical bayesian methods. Cognitive

Science, 32 , 1248-1284.



Forgetting form and fate 33

Simmon, H. A. (1966). A note on jost’s law and exponential forgetting. Psychometrika,

31 , 505-506.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. van der. (2002). Bayesian

measures of model complexity and fit. Journal of Royal Statistical society , 64 ,

583-639.

Stevens, S. S. (1957). On the psychophysical law. Psychological Review , 64 , 153-181.

Tanner, M. A. (1998). Tools for statistical inference: Methods for the exploration of

posterior distributions and likelihood functions. New York: Springer.

Wagenmakers, E. J., & Farrell, S. (2004). Aic model selection using akaike weights.

Psychonomic Bulletin and Review , 1 , 192-196.

Wais, P. E., Wixted, J. T., Hopkins, R., & Squire, L. R. (2006). The hippocampus

supports both the recollection and the familiarity componants of recognition

memory. Neuron, 49 , 459-466.

Wickens, T. D. (1998). On the form of the retention function: Comment on rubin and

wenzel (1996). Psychological Review , 105 , 379-386.

Wixted, J. T. (2004a). On common ground: Jost’s(1897) law of forgetting and ribot’s

(1881) law of retrograde amnesia. Psychological Review , 111 , 864-879.

Wixted, J. T., & Ebbesen, E. B. (1991). On the form of forgetting. Psychological Science,

2 , 409-415.



Forgetting form and fate 34

Footnotes

1Throughout this paper we will use the term ‘fit’ to mean a traditional goodness-of-fit

measure of a particular set of parameters to data rather than in a Bayesian sense of where

‘fit’ is used to describe model adequacy of all possible combinations of model parameters

2Other causes might also apply, such as study resulting in encoding of a short-term

memory representation but not a long-term memory representation. In this case measured

retention might be perfect immediately after study, due to retrieval from short-term

memory, even when b < 1. In Averell and Heathcote’s (2009) experiment the interval

between study and the first lag was filled with other study and test events, so retrieval

from short-term memory was unlikely.

3We do not consider either the linear or logarithmic functions examined by Lee

(2004) as they can make predictions outside the unit interval, and so are not suitable for

retention probability data.

4An alternate approach to these questions involves examining a four-parameter

Pareto function with an estimated asymptote. However, analyses with this function

tended to be numerically unstable, often producing extremely small estimates of γ and

correlated very large estimates of b. The reason is related to the Pareto’s hazard function,

which can be close to constant, like that of the exponential, over the range of

experimentally measured lags when γ is small. Correlated large values of b compensate for

the attendant very small change in P (t) over the measured range of t.

5The raw sequence of samples or “chain” produced by MCMC takes some time to

converge to the posterior distribution, and is often auto-correlated, which can cause a

variety of problems. Typically initial samples before convergence are discarded, but very

strong autocorrelation can cause the sequence to fail to converge. We report results based

on single chains, which, although strongly auto-correlated, did converge after we discarded

the first 20,000 samples. This was confirmed by visual inspection of the chain and checks
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using multiple chains tested with GelmanRubin1992’s statistic.

6We attempted to obtain MCMC samples with even more diffuse hyper-priors but

WinBUGS frequently crashed at these levels
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Table 1

Mean posterior deviance for each retention curve model, ¯D(Θi), and estimates of the effective

number of parameters per participant, pD and pV , for implicit and explicit conditions based

on data from all lags.

Explicit Implicit

Model D(Θi) pD pV D(Θi) pD pV

Exponential 1011 2.43 3.04 923 -0.8 2.45

Power 937 1.66 2.74 879 -0.96 2.25

Pareto 1002 1.04 2.31 933 -2.42 1.87
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Table 2

Mean posterior deviance for each retention curve model, ¯D(Θi), and estimates of the effective

number of parameters per participant, pD and pV , for implicit and explicit conditions based

on data from all lags.

Explicit Implicit

Model D(Θi) pD pV D(Θi) pD pV

Exponential 1011 2.43 3.04 923 -0.8 2.45

Power 937 1.66 2.74 879 -0.96 2.25

Pareto 1002 1.04 2.31 933 -2.42 1.87
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Table 3

Information criteria for implicit and explicit conditions based on data from all lags.

conditional model probabilities based on AICM and BICM are given in brackets.

Explicit Implicit

Model DIC AICM BICM DIC AICM BICM

Exponential 1049 1059(0) 1427(0) 910 962(0) 1260(0)

Power 963 981(1) 1313(.95) 864 915(1) 1188(.67)

Pareto 1019 1039(0) 1319(.05) 895 963(0) 1190(.33)
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Table 4

Mean estimates of the hyper-distribution standard deviation (SD) and correlation (r)

parameters for the exponential, power and Pareto models forexplicit and implicit instruction

conditions.

Explicit Implicit

Exponential a b α Exponential a b α

SD .32 .54 .7 .32 .55 .73

r a,b a,α b,α a,b a,α b,α

.23 .04 .41 .24 -.09 .32

Power a b β Power a b β

SD .31 .6 .45 .31 .66 .53

r a,b a,α b,β a,b a,β b,β

.14 .07 .18 .21 .052 .27

Pareto b γ β Pareto b γ β

SD .39 .4 .13 .7 1 .38

r b,γ b,β γ,β b,γ b,β γ,β

.18 .3 -.37 .07 .27 -.7
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Table 5

Mean estimated posterior parameter values (with 95% credible interval) for the power model

in both explicit and implicit conditions

Parameter

a b β

Explicit .19 (.15,.24) .78 (.71,.85) .68 (.5,.9)

Implicit .19 (.14,.24) .62 (.43,.86) .67 (.43,1.1)
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Figure Captions

Figure 1. Graphical notated hierarchical model for the asymptote exponential model of

forgetting. Graphical models can show the relationship between and among observed and

unobserved variables in a model in such a way that allows for quick and easy viewing of

the total model structure. In graphical models, nodes are used to represent variables and

dependencies are built into the graph configuration itself (where second order or ’child’

nodes depend on first order or ’parent’ nodes). Here we use accepted convention,

representing continuous variables with circular nodes and discrete variables as square

nodes. Further, observed variables are shaded and unobserved variables unshaded.

Stochastic variables are denoted with single boarders and deterministic variables have

double boarders. In this model idividual participant parameter vectors Θ are drawn from

a multivariate normal hyper-prior with mean µ and a k × k variance covariance matrix Σ

which was assumed to have an inverse Wishart W−1 hyper-prior distribution. In this moel

∆ represents the combination of µ and Σ for each node in the model. The unit interval

parameters ai and bi correspond to probit transformed standard normal distributions.

The logerithmic parameter α has a mean of zero and a standard deviation of 5. The

hierarchical model model has the advantage over non-hierarchical having participants

estimates modeled from a higher more abstract level. B=Binomial, MV N=multivariate

normal, t= lags 1-10, i=participants.

Figure 2. Exponential model fits to both the explicit and implicit data. The points

represent the population mean retention probability estimates. The error bars represent

the 95% credible intervals for the population. Ticks on the ordinate indicate lags on a

log10 scale. The vertical dot dash line at the bottom of the plot represents chance

completion probability.

Figure 3. Power model fits to both the explicit and implicit data. The points represent
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the population mean retention probability estimates. The error bars represent the 95%

credible intervals for the population. Ticks on the ordinate indicate lags on a log10 scale.

The vertical dot dash line at the bottom of the plot represents chance completion

probability.

Figure 4. Pareto model fits to both the explicit and implicit data. The points represent

the population mean retention probability estimates. The error bars represent the 95%

credible intervals for the population. Ticks on the ordinate indicate lags on a log 10 scale.

The verticlal dot dash line at the bottom of the plot represents chance completion

probability.

Figure 5. Posterior predictive distribution for the power (panel 1), exponential (panel 2)

and Pareto (panel 3) for participant 9 in the explicit condition. The vertically aligned

squares represent the posterior mass of stems completed at each lag given the models

assumptions. The black line represents counts of stems correctly completed at each lag for

participant 9.

Figure 6. Posterior predictive distribution for the power (panel 1), exponential (panel 2)

and Pareto (panel 3) for participant 15 in the implicit condition.
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